Distributed Deep Reinforcement Learning: Learn how to play Atari games in 21 minutes
نویسندگان
چکیده
We present a study in Distributed Deep Reinforcement Learning (DDRL) focused on scalability of a state-of-the-art Deep Reinforcement Learning algorithm known as Batch Asynchronous Advantage ActorCritic (BA3C). We show that using the Adam optimization algorithm with a batch size of up to 2048 is a viable choice for carrying out large scale machine learning computations. This, combined with careful reexamination of the optimizer’s hyperparameters, using synchronous training on the node level (while keeping the local, single node part of the algorithm asynchronous) and minimizing the memory footprint of the model, allowed us to achieve linear scaling for up to 64 CPU nodes. This corresponds to a training time of 21 minutes on 768 CPU cores, as opposed to 10 hours when using a single node with 24 cores achieved by a baseline single-node implementation.
منابع مشابه
Playing Games with Deep Reinforcement Learning
Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[10], beat a world-class player [13] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...
متن کاملVision-based Deep Reinforcement Learning
Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...
متن کاملPlaying Atari Games with Deep Reinforcement Learning and Human Checkpoint Replay
This paper introduces a novel method for learning how to play the most difficult Atari 2600 games from the Arcade Learning Environment using deep reinforcement learning. The proposed method, called human checkpoint replay, consists in using checkpoints sampled from human gameplay as starting points for the learning process. This is meant to compensate for the difficulties of current exploration...
متن کاملAccelerated Methods for Deep Reinforcement Learning
Deep reinforcement learning (RL) has achieved many recent successes, yet experiment turnaround time remains a key bottleneck in research and in practice. We investigate how to optimize existing deep RL algorithms for modern computers, specifically for a combination of CPUs and GPUs. We confirm that both policy gradient and Q-value learning algorithms can be adapted to learn using many parallel ...
متن کاملPlaying Atari with Deep Reinforcement Learning
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learnin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.02852 شماره
صفحات -
تاریخ انتشار 2017